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Abstract  

Recent developments in spontaneously broken gauge theories as well as in group analysis 
of masses and spins in curved space-time indicate that rest masses may change as a function 
of cosmic time. Such as effect is incompatible with standard cosmological models. A set 
of cosmological models that incorporate mass variation is introduced. These cosmological 
models are shown to be fully compatible with the group analysis, yielding exactly the same 
formula; they are used therefore as a theoretical testing ground for the hypothesis of mass 
variation. The following consequences of this hypothesis are obtained: (1) Cosmological 
red-shifts are shown to correspond to a contracting, rather than expanding, universe. (2) 
The effects of mass variation on planetary orbits are calculated; they are not  precluded 
by the data. Conclusive experimental evidence is expected within a few years. 

1. Introduction 

For  space- t ime w i th  c o n s t a n t  fou r -d imens iona l  curva tu re  the  t h e o r y  of  
g roup  r e p r e s e n t a t i o n s  reveals a deep re la t ionsh ip  b e t w e e n  the  g e o m e t r y  of  the  
universe  and  f u n d a m e n t a l  p roper t i e s  o f  par t ic les :  Eigenvalues  of  the  Casimir 
ope ra to r s  o f  the  g roup  of  m o t i o n  c o r r e s p o n d  to  masses  and  spins (Wigner,  
1939;  T h o m a s ,  1941) .  1 Real is t ic  cosmologica l  models ,  however ,  have  a four-  
d imens iona l  curva tu re  K(t)  w h i c h  is a f u n c t i o n  o f  cosmic  t ime  t. Such  mode ls  
do  n o t  have  a g roup  o f  m o t i o n .  2 A re l a t ionsh ip  b e t w e e n  the  g e o m e t r y  o f  the  
m o d e l  and  f u n d a m e n t a l  p roper t i e s  o f  par t ic les  was never the less  der ived (Malin,  

I Thomas' work was corrected by Newton (1950). For an introduction to the groups of 
motion of space-times with constant four-dimensional curvature, which contains further 
references, see Gi;trsey (1965). 

2 For realistic cosmological models groups of motion have to be replaced by the more 
general structure of quasigroups; see Halpern & Malin (1971, 1974). 
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1974), and it led to the following result: While spins of  particles are rigorously 
conserved, all masses change as a function of  cosmic time, 3 decrease in an 
expanding universe, and increase in a contracting one. 

For the standard cosmological models of  general relativity, rest masses are 
conserved. One needs, therefore,  a different set of  cosmological models to  
serve as a theoretical testing ground for the hypothesis of  mass variation. Such 
a set can be obtained from the equations 

Ruv = -47rK T#v (1.1) 

(Malin, 1975). 4,5 Equations (1.1) cannot,  in general, replace Einstein's equa- 
tions, because their hydrodynamic  consequences are inconsistent with experi- 
mental results (Lindblom & Nester, 1975). The cosmological models that are 
derived from equation (1.1) for isotropic,  spatially homogeneous universes, 
however, are not precluded by observational and experimental  data and in- 
corporate time variation of  all masses. They can serve therefore as a theoretical 
testing ground for the hypothesis of  mass variation. 

In the present paper these cosmological models and the group analysis of  
masses and spins in curved space-time are shown to yield exact ly the same 
result for mass variation. We then proceed to derive consequences of  such a 
mass variation for the interpretat ion of the cosmological red-shift and for 
planetary orbits. 

Section 2 presents the cosmological models of  equation (1.1). Previous 
results are summarized and some new relationships are obtained.  All the models 
are shown (a) to have positive four-dimensional curvature K (as compared with 
the standard cosmological models of  general relativity, all having K < 0); (b)l 
to imply a time variation of  all masses m according to the formula 

re(t) ~ [K(t)] I/2 (1.2) 

In Sections 3-5 the method of  group analysis of masses and spins (Malin, 
1974) is applied to cosmological models with K > 0. The relevant group is 
0 (3 ,  2), as compared with 0 (4 ,  1) for the case K < 0. As pointed out  by  Dirac 
(1935) unresolved difficulties in formulating quantum theory in space-times 

3 Recently the possibility of mass variation was also raised in the context of Salam's 
(1968) and Weinberg's (I967) spontaneously broken gauge theories of weak and electro- 
magnetic interactions. Spontaneously broken gauge theories were reviewed by Mahanthappa 
(1973) and Abets & Lee (1973). Consequences of such theories for the gravitational field 
equations were discussed by Linde (1974), Dreitlein (1974) and Veltman (1974). In the 
context of such theories the energy of the vacuum depends on the temperature of the 
medium and therefore varies on the cosmological scale (Kirzhnitz, 1972; Kirzhnitz & 
Linde, 1972; Wienberg, 1974). Various rest masses may vanish to zeroth order and can 
then be calculated as higher-order effects (Weinberg, 1972a; Georgi & Gtashow, 1972). 
Such effects may change with the temperature of the medium and therefore change 
with time. 

4 R#v is the Ricci tensor, R is the Riemann scalar, g is the gravitational constant, and 
Tgu is the energy-momentum tensor. 

5 The constant 4~rK in equation (1.1) was derived by the requirement that Newton's 
law of gravitation is obtained as a limiting ease, in complete analogy with the derivation 
of the constant 87r~ in Einstein's equations. 
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of constant negative curvature, with 0(4, 1) as the group of motion, do not 
occur in space-time of constant positive curvature, with 0(3, 2) as the group 
of motion. The group analysis yields equation (1.2) for all isotropic, spatially 
homogeneous space-times with K(t) > 0; the consistency of the group approach 
with the cosmological models of equation (1 .I) is thus established. 

Section 6 is devoted to the cosmological red-shifts. Since mass variation 
involves a variation of all spectroscopic frequencies, the observed red-shift is 
due to a combination of two effects: (a) The change in the frequency of a 
free photon as it travels from a distant galaxy; (b) the concurrent change in 
the frequency of the atomic transition corresponding to the emitted photon. 
Both shifts are towards the red in an expanding universe and towards the blue 
in a contracting one; and since (b) is shown to be stronger than (a), an observed 
red-shift corresponds to a contracting universe. In the context of equation 
(1.1) available evidence does not preclude a universe, which is at present in a 
contracting phase. 

An estimate for the rate of change of masses is obtained in Section 6. Con- 
sequences for planetary motion are derived and compared with available 
evidence. Conclusive results are not available yet, but are expected within the 
next few years. Time variation of all masses will produce a variety of other 
effects. Beta-decay experiments as well as astronomical, astrophysical and 
geological evidence were discussed in a previous article (Malin, 1974). Following 
F. J. Dyson's analysis of evidence for time variation of fundamental constants 
(Dyson, 1972), it was shown that available data do not preclude such a mass 
variation. 

2. Cosmological Models 

If the universe is assumed to be isotropic, spatially homogeneous, and filled 
with a congruence of fundamental world lines, then it is possible to choose a 
canonical coordinate system (t, x I, x 2, x3), such that the metric tensor in the 
coordinate system takes the Robertson-Walker form 

ds 2 =dr 2 -S2( t ) (dXl  2 +dx22 +dx32)/(1 + lkr2)2 (2.1) 
where 

r = (x 12 + x22 + x32)1/2 (2.2) 

and on the fundamental world lines ds 2 = dt 2. The coordinate t in the canoni- 
cal frame of reference is called "cosmic time" and the function S(t) in equation 
(2.1) is called "the expansion function." 

For the purpose of calculating and discussing cosmological models the 
energy-momentum tensor will be assumed, as usual, to have the form 

I (t) o o it 
i °° Tv ~*= 0 0 

0 0 

(2.3) 
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where p(t) is the matter density. The standard cosmological models of general 
relativity are then obtained from the following equations for the expansion 
function S(t): 

8rrt~p = 3SZ/S 2 + 3k/S 2 (2.4a) 

2SS' + ~2 + k = 0 (2.4b) 

The cosmological models of equation (1.1), however, are obtained from the 
following equations (Matin, 1975): 

4rrKp = -35:)/S (2.5a) 

SS" + 2S 2 + 2k = 0 (2.5b) 

where in equations (2.4) and (2.5) k = +1,0, - I  for spherical, Euclidean, and 
pseudospherical spaces, respectively. 

The four-dimensional curvature of cosmological models is, in general, a 
function of cosmic time t and is given in terms of the expansion function S(t) 
by 

K(t) = -(1/12)gat3Rc~ = -(1/2S2)(SS + ~,2 + k) (2.6) 

It follows from equations (2.4) and (2.5) that for all the cosmological models 
of Einstein's equations K(t) is negative at all times: 

K(t) = -~nKp(t)  < 0 (2.7) 

and for the cosmological models of equation (1.1), K(t) is always positive: 

K(t) = +½nKO(t) > 0 (2.8) 

The spherical, Euclidean, and pseudospherical space solutions of equation 
(2.4) are well known and will not be reproduced here. 6 Equation (2.5) also 
allows for spherical, Euclidean, and pseudospherical space solutions, which 
are given, up to a final quadrature, by the following equation: 

S 

t = f (DS  -4  - k)  -1/2 dS (2.9) 
o 

where D is a constant. The first- and second-order derivatives of S(t)  are given 
by 

dS/dt  = (DS -4 _ k) 2/2 (2.10) 

d 2 S / d t  2 = 2DS -s (2.11) 

The spherical space solution [k = +1 in equation (2.9)] represents a put- 
sating universe with an ordinary maximum at S = D 1/4 and a singularity at 
S = 0. The singularity corresponds to the breakdown of equation (2.3) for the 

6 See, e.g., Robertson & Noonan (1968), Chap. 17. 
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energy-momentum tensor as the density of  matter gets high. The Euclidean 
space solution is given by 

S(t) = 3D1/2t w3 (2.12) 

as compared to the t 2/3 behavior of  the Friedmann universe. Equation (2.12), 
like the Friedmann universe, represents a contracting universe at t < 0 and an 
expanding universe at t > 0. The pseudospherical space solution [k = - 1  in 
equation (2.9)] also represents a contracting universe at t < 0, and expanding 
one at t > 0. 

The most significant difference between the cosmological models of  equa- 
tions (1.1) and the standard cosmological models of general relativity has to do 
with the time variation of all masses. For the standard models it follows from 
equations (2.4) that p(t)S3(t) is a constant and therefore mass is conserved. In 
the case of  equation (1.1), however, p(t)S3(t) is a changing quantity. This can 
be understood to imply that all masses in the universe change at the same rate. 
The rate of  change is obtained from equations (2.5) and (2.10): 

D(t) = P0 IS( t ) ]  -6  (2.13) 

re(t) = m o [S(t)] -3 (2.14) 

&( t)/m( t) = - 3f;( t)/S( t) (2.15) 

Here m(t) is the mass of  a particle (or any other physical system held together 
by electromagnetic or strong interactions) at cosmic time t, and Po and m o are 
constants. Equations (2.8), (2.13), and (2.14) yield a simple relationship between 
mass and four-dimensional curvature: 

m(t) = r~ o [K(t)] 1/2 (2.16) 

where mo is a constant. The relationship (Z16) is valid for all the isotropie, 
spatially homogeneous cosmological models of  equation (1.1). 

Let us, finally, write down for future reference the expansion function for 
the cosmological model with positive constant four-dimensional curvature 
K =  b-2: 

S(t) = b sin(t/b) (2.17) 

This model 7 is not a solution of either equation (2.4) or equation (2.5). It 
represents a universe which starts with a singularity at t = 0, expands, and then 
contracts to a singularity at t = rrb. 

3. Group Analysis o f  Cosmological Models 

A group analysis of  space-times with constant four-dimensional curvature 
reveals a deep relationship between the geometry of space-time and fundamental 
properties of  particles: The eigenvalues of  the Casimir operators of  the groups 
of motion can be interpreted in terms of masses and spins of  particles. When 
the four-dimensional curvature K [equation (2.6)] is constant and positive the 

7 Robertson & Noonan (1968), Chap. 16. 
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group of motion is 0(3, 2), when K = 0 it is the Poincar~ group, and when K 
is constant and negative the group of motion is 0(4, 1) (Wigner, 1939; Thomas, 
1941). 

Standard general-relativistic cosmological models, as well as the models dis- 
cussed in Section 2, however, possess four-dimensional curvature that varies 
as a function of cosmic time; these models do not have a group of motion, and 
a straightforward application of group analysis is, therefore, impossible. Never- 
theless, a relationship between the geometrical structure of the model and 
masses and spins of particles can be established along the following lines 
(Malin, 1974): 

For any given isotropic spatially homogeneous universe U, at any given 
cosmic time to, let an associated constant-curvature space-time M(to) be defined 
as that space-time, the constant (four-dimensional) curvature of which is the 
same as the four-dimensional curvature of Uat time t o. It is then postulated 
that the masses and spins of  particles in a universe U at time t o are given by the 
eigenvalues o f  the Casimir operators of  the associated space-time M(to). The 
postulate is based on the following reasoning: In spite of the fact that space- 
time is curved, the Casimir operators of the Poincard group, which is the group 
of motion of JTat space-time, do correspond to masses and spins of particles. 
This amazing correspondence can be understood if the flat space-time of the 
Poincar~ group is taken as a limiting case of curved space-time, and the Poincar~ 
group representations are obtained from those of the groups O(4,1) or 0(3,2) 
by the process of contraction (Segal, 1951; In6nu & Wigner, 1953; In6nu, 
1965), as the curvature approaches zero. It seems, therefore, that the associated 
constant-curvature model M(to) approximates U better than flat space-time, 
since the limit K ~ 0 is not taken. In fact, since the curvature of M(to) is equal 
to the curvature of U at time t o it is even possible that masses and spins in U 
will be given exactly by eigenvalues of the Casimir operators of O(4,1) or O(3,2), 
as the case may be. 

The procedure outlined in the present section will be carried out now for 
the cosmological models of equation (1.1), the curvature of which is positive 
[equation (2.8)]. The group of motion of the associated space-times is 0(3,2). 

4. The Casimir Operators of  the Group 0(3,2) and the Poincar~ Group 

The group O(3,2), the group of motion in a space-time with constant posi- 
tive four-dimensional curvature, is also the group of transformations in five- 
dimensional Euclidean space with coordinates Go, ~1, ~2, ~3, ~s that leaves 
invariant the hypersurface 

~o 2 - ~ i  2 - ~ 2 2  - ~32 +~s  2 = b  2 (4.t)  

Following Evans (1967), let us denote the infinitesimal operators of the 
group 0(3,2) byMi/ ( i , j  = 0, 1, 2, 3, 5). They obey the commutation relations 

[Mi], Mkl] = gilMjk + g]kMtt - gikMjl -gjlMig (4.2) 
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where the metric tensor is defined by 

g o o = g s s = l ,  g 1 1 = g 2 2 = g 3 3 = - l ,  g i j = O  (i--/=j) (4.3) 

The Casimir operators of the group O(3,2) are 

C 1 = ½M,TM li (4.4) 

C 2 = WiW i (4.5) 

where the t¢i are defined as 

Wi = ~eijktmM/k M tm 

(eijklm is the totally antisymmetric tensor with five indices). 
The Poincard group is obtained from the group 0(3,2) by the process of 

contraction (evans, 1967), as b -~ o~. Let us define 

(4.6) 

It u = (i /b)Mus , /a = O, 1,2, 3 (4.7) 

Li  =/M/0 , i = 1,2, 3 (4.8) 

Ji = geijkMtl. ~k, i, j, k = 1, 2, 3 (4.9) 

11 = - (1 /2b2)C 1 (4.10) 

12 =- (1 /b2)C2 (4.11) 

Pu = lim 11 u (4.12) 
b--+~ 

It follows from equation (4.2) that in the limit b -+ ~ Pu,  Li, Ji satisfy the 
commutation relations of the infinitesimal generators of the Poincard group; 
and, furthermore 

lim I 1 =PuP u = m  2 (4.13) 

where m is the mass and 

l im 12 = m2s(s  + 1) (4.14) 
b --+oo 

where s corresponds to the spin for a system with nonvanishing mass. 

Because of equations (4.8)-(4.14) the Poincard group is a valid approxima- 
tion. In the physical world, however, the limit b ~ oo is not taken and masses 
and spins should be obtained using the group 0(3,2) rather than the Poincard 
group. This is done in the next section. Let us point out here that the structure 
of quantum theory has been developed for a universe with constant positive 
curvature (Dirac, 1935; Fronsdal, 1965), and difficulties that arise in the case 
of the group O(4,1) do not exist for 0(3,2). In particular, in the case of O(4,1) 
the concept of energy is problematic, because the spectrum of the Hamiltonian 
of all the irreducible representations is indefinite. 8 In the case of 0(3,2), how- 

8 This problem was discussed in detail by Philips & Wigner (1968). 
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ever, there are irreducible representations for which the spectrum of the Hamil- 
tonian has a minimum and a casual structure was shown to exist (Fronsdal, 
1965, 1973). 

5. Mass Variation 

Consider an isotropic, spatially homogeneous universe which is a solution 
of  equation (I .2). Its associated constant-curvature space-time at cosmic time 
t o (see Section 2) is given by 

M(to): S(t) : b o sin(t/bo) (5.1) 

where, by equation (2.8) 

b o = [K(to)] -1/2 : [lm~P(to)]-l/2 (5.2) 

Let the mass and spin of  a particle 9 in U correspond, at time t o to the eigen- 
values mo 2 and mo2So(So + 1) of the operators 11 and 12 [equations (4.10) 
and (4.11)], or equivalently, to the eigenvalues 

cl ° = 2bo2mo z (5.3) 

e2 ° = bo2mo2So(So + 1) (5.4) 

of  the operators C 1 and C 2 [equations (4.4) and (4.5)]. As shown in a previous 
article (Malin, 1974) considerations of  continuity and dimensionality lead to 
the conclusion that as a particle traces a world thae in the universe U the eigen- 
values of  the Casimir operators C 1 and C 2 corresponding to the associated 
space-times do not vary as a function of  cosmic time. 

By equations (5.2), (5.3), and (5.4), if the constant eigenvalues of  C1 and 
C 2 associated with a particle are denoted by cl and c 2 then its spin 2c~1c2 is 
a constant, but its mass varies as a function of cosmic time according to the 
formula 

m(t) = (c 1/2) -x/2 [b(t)] -1 = [cl K(t)/2] 1/2 (5.5) 

Comparing equation (5.5) with equation (2.16) we realize that for the cosmo- 
logical models o f  equation (1.1), the mass variation derived analyticaUy from 
equation (2.5) is identical with the mass variation derived through the general 
group theoretical procedure. These cosmological models can serve, therefore, 
as a theoretical testing ground for the consequences of  the group analysis. 

6. A Contracting Universe 

In the present section the cosmological red-shift will be derived for the 
cosmological models of  equation (1. I). The mass variation causes atomic fre- 

9 The term "particle" is used for brevity. Similar considerations apply to all physical 
systems held together by electromagnetic or strong interactions. 
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quencies to change; this change will be shown to be greater than the red or 
blue shifts of  free photons in expanding or contracting universes. The net 
result is that cosmological red-shifts imply a contracting universe. It will be 
pointed out that such a contracting universe is not precluded by present 
observational evidence. 

We assume a time variation of  all masses according to equation (2.14), con- 
servation of  angular momentum,  which is a rigorous consequence of  the group 
approach [see Section 3 and Matin (1974)],  as well as constancy of  the funda- 
mental constants c (the speed of light), e (the electron charge), h (Planck's 
constant), and K (the constant of  gravitation). Within the context of  the present 
approach there is no reason to doubt the constancy of  c, e, h, or n. 

For all atomic systems, held together by electromagnetic interaction, the 
following results are obtained by dimensional analysis, or else by a straight- 
forward elementary calculation, and equation (2.14): 

r(t) "" [re(t)] -1 ~ S3(t) (6.1) 

v(t) "~ m(t)  ~ [S(t)1-3 (6.2) 

Here r(t) is the radius of any atomic orbit, such as Bohr's radius, and v(t) is 
any spectroscopic frequency. 

For the following analysis we need some standard formulas (Weinberg, 
1972b), the derivation of which is uneffected by the mass variation: 

Let v I = v(t 1) be the frequency of  a photon emitted during an atomic 
transition at time t ~ at a distant galaxy with Robertson-Walker coordinates 
( t l ,  r l ,  0, 4); let v~ be the frequency of  the photon as observed here at the 
present time to; and, finally, let v 0 = V(to) be the frequency of the same atomic 
transition at the present time t o . Then 

Also, defining 

v;fP 1 =S(tl)/S(to) (6.3) 

H i = S(to)/S(to) (6.4) 

q'o = - S  (to)S(to)/S2(lo) (6.5) 

one obtains 

S(tl)=S(to)[1 + H o ( t  1 - to) -½qo'H~o2(t- to) 2 + ' "  "] (6.6) 

When the photon is observed having frequency Vo, the red-shift is obtained by 
comparing v o not with Pl, but rather with Vo, because a spectral line of  fre- 
quency v 1 at time t 1 has a changed frequency v o at time to [equation (6.2)] : 

Vo/V 1 = [S(tl)/S(to) ] 3 (6.7) 

The observed red-shift is given, therefore, by 

Z = (PO ~ t - -  V o ) / P  0 
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and because of  equations (6.3), (6.6), and (6.7) 

z = [S( t l ) /S ( to )  ] 2 _ 1 

= 2H~(t 1 - to) + (1 - qo)H~2( t  - to) 2 + " "  (6.8) 

Following the steps of  standard derivations (Weinberg, 1972b) the following 
relationships are now obtained: 

t I - t o = (1/2H'o)[Z - ¼(1 - qo)z  2 + ' "  "1 (6.9) 

r 1 = ( 1 / 2 S ( t o ) H ~ ) [ - z  + ¼(2 - qo)z' 2 + . .  .l (6.10) 

dL =-- L1/2/4zrl = (t/2H~)) [ - z  - ¼(qo - 2) z2 + ' "  "1 

= 101+(m-M)/s parsecs (6.11) 

dL is the luminosity distance, L is the absolute luminosity, Mis  the absolute 
magnitude, and m is the apparent magnitude. 

m - M = 25 - 5 loglo ( -2Ho)(km]sec /Mpc)  

+ ~qo)z + " "  (6.12) + 5 loglo cz(km/sec)  + 1.086(I  1 , 

It follows from equation (6.12) that the Hubble constant H o, which is derived 
from the Hubble diagram, is related to the rate of  change of  the expansion 
function S(t)  by 

H o = - 2 H ~  = - 2 S ( t o ) / S ( t o )  (6.13) 

The observed red-shift  corresponds, therefore, in the con tex t  o f  the  cosmo- 
logical models  o f  equation (1.1), to a universe whieh is contracting at a rate 
corresponding to hal f  the absolute value o f  Hubble 's  constant. 

How can the value of the cosmological parameter q~ be determined? Within 
the context of  standard cosmological models determinations of  q~ on the basis 
of  Hubble'a diagram are still quite uncertain (Sandage, 1972; Peach, 1970), 
especially when uncertainties in the course of  galactic evolution over billions of 
years are taken into account. Estimates for qo' are also available f rom estimates 
of  the mean density of  matter  Po = p(to).  For the standard cosmological models 
one obtains from equation (2.4) 

pc = 3Ho2/8~rK (6.14) 

qo = po/2pc  = 8m~po/3Ho 2 (6.15) 

where pc is "the critical density": if Po > pc and qo > ½ the universe is closed, 
otherwise it is open. The analogous relationships for the cosmological models 
of  equation (1. I ) a r e  obtained from equations (2.5) and (6.13): 

pc = 3H~2/21m = 3Ho2/8n~ (6.16) 

t 

qo = 2Po/Pc = 87mPo/3Ho ~ (6.17) 
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Po = pc corresponds now to q0 = 2, but the equation Jbr "Pc in terms o f  H o is 
the same as equation (6.14). Current estimates of Po were recently reviewed by 
Gott III et at. (1974). They present a strong case for an open universe, con- 
ceding, however, that the evidence is not conclusive. In fact, possibilities of the 
universe being permeated by, e.g., relativistic gas, very low-mass particles, or 
ionized gas seem viable and are currently under active research (Rees, 1972; 
Coswik & McLelland, 1973). The reason for belief in and search for the so- 
called "missing mass" is clear: As pointed out by Einstein (1950), a closed 
universe is epistemologically much simpler and more elegant than an open one. 

If  equation (1.2) is valid, it follows from equation (6.13) that the universe 
is going now through a contracting phase. This possibility, for an open as well 
as a closed universe, is quite compatible with the strong existing evidence for 
"big-bang". 1° A full discussion of this point is contained in a forthcoming 
paper by V. N. Mansfield and S. Malin. 

7. Predictions and Evidence 

Numerical estimates for the rate of change of all masses are based on 
equations (2.15), (6.4), and (6.13). Current determinations for the value of 
Hubble's constant range between 40 and 60 km/sec/Mpc (Sandage, 1974; 
Sandage & Tammann, 1974; Branch & Patchett, 1973; Kirshner & Kwan, 1974; 
see also McVittie, 1974). When the uncertainties in these determinations are 
taken into account one ends up with the following estimate for mass variation: 

th/m = (+8 -+ 4) x 10 -11/yr (7.1) 

An analysis of the experimental and observational evidence for a mass 
variation of that order of magnitude was presented elsewhere (Malin, 1974). 
It was largely based on an article by F. J. Dyson (1972) concerning evidence 
for time variation of fundamental constants, and led to the conclusion that 
the wealth of available data do not preclude such a mass variation. The present 
section will deal with the effect of mass variation on dimensions and periods 
of orbits; this kind of evidence is the least ambiguous, and some of the relevant 
experiments are expected to be accurate enough to detect such an effect, if it 
exists, within the next few years. 

From Newton's law of gravitation and conservation of angular momentum 
one obtains 

k/r = - 3 t h / m  (7.2) 

f ' /T  = - 5fn/m (7.3) 

where r is the radius of an orbit and T the period of revolution. For an atomic 
clock, however, the frequency v is proportional to m, [equation (6.2)] and 
therefore, 

i~/~, =/n /m (7.4) 

1 o It is perhaps worthwhile noting that the evidence for a "big-bang", impressive as it is, 
is not universally accepted as conclusive (Burbidge, 197t). 
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(See also Gasiorowicz, 1974). When interplanetary ranging experiments and 
planetary orbit observations are carried out using an atomic clock as standard 
of  time one obtains 

(1/r)(dr/dr) = - 2 t h / m  = ( - 1 6  -+ 8) x 10-11/yr (7.5) 

(1/T)(dT/dr)  = - 4 t h / m  = ( - 3 2  + 16) x 10-11/yr (7.6) 

where r is atomic clock time. Equations (7.5), (7.6) are first order in /n /m (an 
obviously adequate approximation). 

Experimental work for the detection of  such small effects was done in a 
different theoretical context, that of  a possible time variation of  the cosmo- 
logical constant K (Dirac, 1937 and 1938). In the case o f  gravitational orbits 
the effect of  mass variations given by equation (7.1) is the same as that of  an 
unchanging mass along with variations in K given by 11 

~/n = (+16 +- 8) x 10-11/yr (7.7) 

This result provides a clear-cut distinction between the present theory ano 
I~rac's hypothesis as welt as other current theories with a changing K: Equation 
(7.7) predicts an increasing K, while Dirac's hypothesis predicts a decreasing ~. 

Experimentally there seems to be no conclusive evidence for either a decrease 
or increase in K of  the order of  magnitude of  equation (7.7) (Dyson, 1972). 
Van Flandern (1975) has recently analyzed lunar occultation observations and 
obtained the value of  ( - 2 7 "  +- 18")/cy 2 for the anomalous acceleration of  the 
Moon's mean longitude. He suggests, as a plausible interpretation, that K changes 
at the rate of  £/K = ( - 8  + 5) x 10 -11/yr. Dyson (1972) points out, however, the 
theoretical uncertainties in lunar orbit determinations and concludes that "the 
Moon's motion will probably remain too much affected by theoretical ambigui- 
ties to be a decisive test" for Dirac's hypothesis. 12 He continues his analysis 
by pointing out that in the long run interplanetary ranging observations will 
provide a better way of  testing such variations in g, because "the planets Venus, 
Mercury, and Mars describe orbits which are undisturbed by tidal effects to 
the precision here required." Such experiments are being conducted over the 
last few years by Shapiro et al. (1971). Shapiro's most recent result so far is 
(Shapiro, 1974) 

g/K = (+4 -+ 8) x 10-11/yr (7.8) 

There is every reason to believe, therefore, that conclusive evidence wilt be 
available within the next few years. 

11 This equivalence holds only for gravitational orbits. Other theoretical predictions based 
on mass variation are quite different from the results of a changing ~ (Malin, 1974). 

12 Dirac's hypothesis is ~ ~ t -1 , where t is the age of the universe; the numerical value of 
~/K according to Dirac's hypothesis is of opposite sign and somewhat smaller in 
magnitude than equation (6.7). 
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Appendix  

When mass variations according to equation (2.14) are considered, one may 
ask what happens to other physical quantities, such as momentum,  energy, etc. 
The answer turns out to be fairly simple. It was shown by SchriSdinger (1939) 
that momenta of massive as well as massless particles are changing according to 

p(t)  " [S(0] -1 (A1) 

The variation of other quantities is simply derived from equations (2.14) and 
(A1). 

Examples: The formula E 2 = mo2c 4 + p2c2 uniquely determines the varia- 
tion of the energy E; the formula v = pc2/E determines the velocity v; etc. 
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